Estimates of Minor Ocean Tide Loading Displacement and Its Impact on Continuous GPS Coordinate Time Series
نویسندگان
چکیده
The site displacement due to ocean tidal loading is regarded as one of the largest uncertainties in precise geodetic positioning measurements, among which the effect of minor ocean tides (MOT), except for the 11 main tidal constituents, are sometimes neglected in routine precise global positioning system (GPS) data processing. We find that MOT can cause large vertical loading displacements with peak-to-peak variations reaching more than 8 mm at coastal/island stations. The impact of MOT on the 24-hour GPS solution is slightly larger than the magnitude of MOT loading itself, with peak-to-peak displacement variation at about 10 mm for the horizontal and 30 mm for the vertical components. We also find that the vertical velocity of all the selected stations in the Southwest Pacific was reduced by more than 10% after considering the MOT effect, while stations with weighted root mean square reduced data account for 62%, 59%, and 36% for the up, east, and north components respectively, in particular for most coastal/island stations. Furthermore, MOT correction could significantly reduce the annual signal of the global stacked east component, the near fortnightly and the long-term periodic signals in the up component. The power of some anomalous harmonics of 1.04 cycle per year is also decreased to some extent. These results further proved the benefits of MOT correction in precise GPS data processing.
منابع مشابه
Detecting andmitigating ocean tidal loading displacements in the Bay of Fundy using GPS
Tidal induced displacement is one of the systematic errors that contribute to the scatter in the geodetic measurements derived from the GPS system. This paper focuses on ascertaining and reducing tidal induced errors due to ocean tide loading (OTL) at two GPS sites, namely CGSJ (Coast Guard Saint John, New Brunswick) and DRHS (Digby High School, Nova Scotia), established under the Princess of A...
متن کاملImpact of solid Earth tide models on GPS coordinate and tropospheric time series
[1] Unmodelled sub-daily periodic signals can propagate into time series of daily geodetic coordinates and tropospheric estimates at various different frequencies. Geophysical interpretations of geodetic products, particularly at seasonal timescales, can therefore be affected by poorly modelled signals in the geodetic analysis. In this study, we use two solid Earth tidemodels (IERS2003 and IERS...
متن کاملAssessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates
Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative s...
متن کاملPrecise comparisons of bottom-pressure and altimetric ocean tides
[1] A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and Sout...
متن کاملSeasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE
In southern Tibet, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic defor...
متن کامل